web analytics

Rss

Venice News Updates

News of Venice, CA and Marina del Rey CA

Saturn’s Moon Enceladus Hosts a Global Ocean

Looking Up500_000001

Note: This is a press release from the SETI Institute.

saturn
Illustration of the interior of Saturn’s moon Enceladus showing a global liquid water ocean between its rocky core and icy crust. Thickness of layers shown here is not to scale. Image credit: NASA/JPL-Caltech

Every square inch of Saturn’s small moon Enceladus overlies a potentially habitable ocean. Observations of Enceladus’ slight wobble as it orbits Saturn can only be explained if the outer crust floats freely from the inner core, according to scientists studying images taken by NASA’s Cassini spacecraft. This means there is a globe-spanning ocean beneath Enceladus’ icy surface.

Enceladus has been a prime location for studying the potential for life in the solar system for the past decade, since Cassini found in 2006 a fine spray of water vapor, icy particles, and simple organic molecules erupting from fractures near Enceladus’ south pole. Measurements of the saltiness of geyser particles in 2009 proved that they must emanate from a liquid reservoir, and a 2014 analysis of Enceladus’ gravitational pull on the Cassini spacecraft demonstrated that the liquid reservoir is at least a regional sea underlying the entire south pole region. The new results—derived using an independent line of evidence based on Cassini’s images—prove that that regional sea is a widening of a global ocean. This discovery is published online in the journal Icarus.

“This exciting discovery expands the region of habitability for Enceladus from just a regional sea under the south pole to all of Enceladus,” said Matthew Tiscareno, a Cassini participating scientist at the SETI Institute, Mountain View, California, and a coauthor of the paper. “The global nature of the ocean likely tells us that it has been there for a long time, and is being maintained by robust global effects, which is also encouraging from the standpoint of habitability,” he said.

The discovery was made through a combination of imaging, dynamical modeling, and statistical analysis. “This was a hard problem that required years of observations, and calculations involving a diverse collection of disciplines, but we are confident we finally got it right,” said Peter Thomas, a Cassini imaging team member at Cornell University, Ithaca, New York, and lead author of the paper.

Enceladus has a tiny, but measurable wobble as it orbits Saturn. The icy moon is not perfectly spherical, and because it goes slightly faster and slower during different parts of its orbit, Saturn pulls and pushes the small moon back and forth as it rotates.

Tiscareno developed a series of dynamical models of this wobble, technically called a libration, and Thomas’s group then tested each model against hundreds of Cassini images, taken of Enceladus’ surface at different times and from different angles, to find the best fit to the observations with extreme precision. The team plugged their best-fit value for the wobble into different models for how Enceladus might be arranged on the inside, including ones where the moon was frozen from surface to core.

“If the surface and core were rigidly connected, the core would provide so much dead weight that the wobble would be far smaller than we observe it to be,” said Tiscareno, “This proves that there must be a global layer of liquid separating the surface from the core,” he said.

The geysers deliver samples from this ocean to the surface regularly, which makes Enceladus a prime candidate in the search for life beyond Earth. Although a handful of worlds are now thought to have subsurface oceans, Enceladus joins only Jupiter’s moon Europa (which was recently selected as the destination of NASA’s next flagship mission) in having an extraterrestrial ocean that is known to communicate with its surface.

New Instrument Images a Young Cousin of Jupiter

Jupiter
An artistic conception of the Jupiter-like exoplanet, 51 Eri b by Danielle Futselaar and Franck Marchis, SETI Institute. Exoplantt is seen in the near-infrared light that shows the hot layers deep in its atmosphere glowing through clouds. Because of its young age, this young cousin of our own Jupiter is still hot and carries information on the way it was formed 20 million years ago.

Note: This is a press release from SETI Institute.

Using a powerful new imaging device, astronomers have espied a Jupiter-like exoplanet 100 light-years distant in the constellation of Eridanus. Unlike most planets found around other stars, 51 Eri b has been seen directly. The instrument employed to make the discovery has also made a spectroscopic analysis of the light reflected from the planet, and has detected gases similar to those in Jupiter’s atmosphere.

“This is the first exoplanet discovered with the Gemini Planet Imager (GPI), one of the new generation instruments designed specifically for discovering and analyzing faint, young planets orbiting bright stars,” says Franck Marchis, Senior Planetary Astronomer at the SETI Institute and member of the team that built the instrument and now conducts the survey. “GPI is far more sensitive than its predecessors. In fact, the 51 Eri system had been observed by four previous-generation instruments that all missed the planet completely.”

The host star, 51 Eri, is very young, a mere 20 million years old, and is slightly hotter than the Sun. The exoplanet 51 Eri b, whose mass is estimated to be roughly twice that of Jupiter, appears to orbit its host star at a distance 13 times greater than the Earth-Sun distance. If placed in our own solar system, 51 Eri b’s orbit would lie between those of Saturn and Neptune.

“51 Eri has everything we’re looking for in a target star,” notes Eric Nielsen, a postdoctoral fellow at the SETI Institute. “It’s relatively close and young. Indeed, the last dinosaur died 40 million years before this star was even born.”

Because GPI not only images exoplanets but also spreads their light for chemical analysis, astronomers can search for such common gases as water and methane in their atmospheres. Researchers had expected to see methane in directly-imaged exoplanets based on the temperature and chemistry of these worlds, but had failed to detect these molecules in large quantities using earlier instruments. However, the observations of 51 Eri b made with GPI have clearly revealed a methane-dominated atmosphere similar to that of Jupiter.

An extraordinarily complex instrument the size of a small car, GPI is attached to one of the world’s biggest telescopes—the 8-meter Gemini South instrument in Chile. It began its survey of stars last year.

“This is exactly the kind of planet we envisioned discovering when we designed GPI,” says James Graham, a professor at the University of California, Berkeley and Project Scientist for GPI.

Astronomers anticipate that 51 Eri b will be a benchmark for future atmospheric studies that seek to understand how planet formation in these extrasolar systems might be similar to the birth of the gas giants in our own system.

“Any planetary astronomer that inspects our data will conclude without the need of complex computer modeling that this is indeed a planet like our own Jupiter. We have found its first distant and younger cousin,” said Marchis.

“51 Eri b is the first one that’s cold enough and close enough to the star that it could have indeed formed the same way Jupiter did,” adds Bruce Macintosh, who spearheaded the construction of GPI and now heads up the survey. “This whole planetary system could be a lot like ours.”

Kepler Space Telescope Finds Earth-Sized World

Looking Up500_000001

    Eklund scours the astronomy press releases and chooses the one or ones most interesting for his readers. This is a press release from (Search for Extraterrestrial Intelligence) SETI Institute.

New World

Scientists analyzing four years of data from NASA’s Kepler mission have released a new catalog of exoplanet candidates. The catalog adds more than 500 new possible planets to the 4,175 already found by the famed space-based telescope.

“This catalog contains our first analysis of all Kepler data, as well as an automated assessment of these results,” says SETI Institute scientist Jeffrey Coughlin who led the catalog effort. “Improved analysis will allow astronomers to better determine the number of small, cool planets that are the best candidates for hosting life.”

The Kepler space telescope identifies possible planets by observing periodic dips in the brightness of stars. However, confirmation of their true planetary status requires observations by other instruments, typically looking for slight shifts in the motion of the host suns. Historically, the overwhelming majority of Kepler’s discoveries have turned out to be actual planets.

The new catalog includes 12 candidates that are less than twice Earth’s diameter, orbiting in the so-called habitable zone of their star. This zone is the range of distances at which the energy flux from the star would permit liquid water to exist on the planet’s surface. Of these candidates, Kepler 452b is the first to be confirmed as a planet. At a distance of 1,400 light-years, Kepler 452b accompanies a star whose characteristics are very similar to the Sun: it is 4 percent more massive and 10 percent brighter. Kepler 452b orbits its star at the same distance as Earth orbits the Sun.

“Kepler 452b takes us one step closer to understanding how many habitable planets are out there,” notes Joseph Twicken, also of the SETI Institute and the lead scientific programmer for the Kepler mission. “Continued investigation of the other candidates in this catalog and one final run of the Kepler science pipeline will help us find the smallest and coolest planets. Doing so will allow us to better gauge the prevalence of habitable worlds.”

Kepler 452b has a better than even chance of being a rocky world on the basis of its size and the type of star that it orbits. It falls into a class of planets that are between the size of Earth and Neptune. While these are the most abundant type of world found by Kepler, our own solar system does not boast such a planet.

Intriguingly, while similar in size and brightness to the Sun, Kepler 452b’s host star is 1.5 billion years older. It therefore can give us a peek into a crystal ball showing a possible future for Earth.

“If Kepler 452b is indeed a rocky planet, its location vis-a-vis its star could mean that it is just entering a runaway greenhouse phase of its climate history,” says Doug Caldwell, a SETI Institute scientist working on the Kepler mission. “The increasing energy from its aging sun might be heating the surface and evaporating any oceans. The water vapor would be lost from the planet forever.”

“Kepler 452b could be experiencing now what the Earth will undergo more than a billion years from now, as the Sun ages and grows brighter,” Caldwell adds.